

Coverage Enhancement for PMR/LMR Networks

Alireza Etemadfar

Agenda

- PMR/LMR Coverage Challenges
- What is Radio Rebroadcast?
- PMR/LMR Radio Rebroadcast Solutions
- Design Considerations

Radio Coverage Challenges

- PMR/LMR plays a vital role in maintaining and improving the personnel safety and operational efficiency in public safety, transport, resources and utilities sectors
- Large scale public safety and enterprise networks have often outstanding outdoor coverage which continues to expand
- Indoor Coverage has been limited to date
- Primary investments have been in outdoor coverage
- Strained Capex budgets have been able to serve only absolute priority sites
- New radio site deployments can be very expensive and complex

What is Radio Rebroadcast?

- Radio Rebroadcast (RRB) is the generic term for coverage enhancement solutions that boost and extend the existing radio coverage (from a donor) into a desired area where the coverage is poor or non-existent
- Cost effective and easy to deploy where coverage is needed with no extra capacity
- · Advantages over a new radio site deployment
 - Lower equipment cost
 - No need for expensive multicoupling and backhaul
 - No additional core or spectrum licenses
 - Easier maintenance and lower operational costs

RRB Applications

RFI

TECHNOLOGY SOLUTIONS

- Underground tunnels
- In-building coverage
 - Hospitals
 - Shopping Centers
 - Police and Fire Stations
 - Public Performance Venues
- Outdoor blackspots
- Remote locations and sites
- Rapid coverage deployment

What Radio Signals Can Be Rebroadcast?

- PMR / LMR Radio Coverage (2Way Radio)
- . AM/FM/DAB/DAB+ radio signals
- Paging System
- · GPS
- Cellular

www.comms-connect.co.nz

. WiFi

How Does a PMR/LMR RRB System Work?

Ontical Fibre

Off-Air RRB System

Fibre -Fed RRB System

RRB System Components

#CommsNZ

Channel Selective VS Band Selective BDAs

Band Selective BDA:

- Broad frequency passband
- Potential spectrum pollution
- Part of the available power is wasted on unwanted signals and noise
- Suitable for underground and remote applications or where the spectrum regulatory requirements are note very strict

Channel Selective BDA:

- Passes and boosts only the desired frequencies
- No spectrum pollution
- Power budget is spent only on desired signals
- Usually more expensive than band selective BDAs
- Introduces group delay due to the narrow filter width
- Additional features such as gating and equalization

BDA Selection Criteria

- Band Selective vs. Channel Selective BDA
 - Spectrum regulatory requirements
 - Regulatory requirements are different in every country
 - BDA and desired coverage area location
 - Spectrum pollution is a less serious issue if the desired coverage area is underground or in a remote location
 - Uplink spectrum pollution: Less serious issue if the BDA is coupled with the donor site directly
 - Cost
 - Channel Selective BDAs are generally more expensive
 - Radio Technology and Group Delay
 - With channel selective BDAs, each radio technology requires a specific filter with a specific group delay
 - Some technologies are more sensitive to time delays
 - With channel selective BDAs, signal dominance should be carefully considered in the design. Frequency translation'simplifies the design.

Band Selective BDAs

Channel Selective BDAs (DSPbR)

#CommsNZ

Design Considerations

- Signal dominance in non-translating systems
 - UL signal dominance
 - DL signal dominance
- Isolation between donor and service antennas
 - 10dB higher than the gain in Non-translating BDAs
- Frequency translation relaxes isolation requirements and rectifies the signal dominance issues
 - TRex for P25 Trunking Networks
- Uplink signal levels in DAS
 - RSSI should be <-30dBm

Deployments

- Scalable Solutions from small buildings to large and complex tunnel networks
 - From single BDA and single antenna to multiple nodes and full DAS systems for complex buildings and tunnels
- Simple deployment for small to medium installations
 - Desktop Design
 - Site Survey
 - Installation
 - Test and Commissioning

Sydney NorthConnex

Maitland Hospital

Waterview Tunnel

Sydney Harbour Tunnel

www.comms-connect.co.nz

IN ASSOCIATION WITH

MAGAZINE PARTNER

ORGANISED BY

